#include #include #include #include #include #include #include "rb_lidar.h" #define BUFFER_SIZE 1024 // UDP接收线程 void *udp_listener(void *arg) { RBLidar *lidar = (RBLidar *)arg; int sockfd; struct sockaddr_in server_addr, client_addr; socklen_t addr_len = sizeof(client_addr); udp_packet_t udp_packet_temp; // 创建UDP套接字 sockfd = socket(AF_INET, SOCK_DGRAM, 0); if (sockfd < 0) { perror("socket"); return NULL; } // 设置服务器地址 memset(&server_addr, 0, sizeof(server_addr)); server_addr.sin_family = AF_INET; inet_pton(AF_INET, lidar->ip, &server_addr.sin_addr); server_addr.sin_port = htons(lidar->port); // 绑定套接字 if (bind(sockfd, (struct sockaddr *)&server_addr, sizeof(server_addr)) < 0) { perror("bind"); close(sockfd); return NULL; } printf("Listening for UDP packets on %s:%d...\n", lidar->ip, lidar->port); // 接收数据 while (1) { int len = recvfrom(sockfd, (char *)&udp_packet_temp, UDP_BUF_SIZE, 0, (struct sockaddr *)&client_addr, &addr_len); if (len < 0) { perror("recvfrom"); continue; } // 使用双缓冲机制 pthread_mutex_lock(&lidar->mutex); // 将接收到的UDP包中的子包存入当前缓冲区 for (int i = 0; i < CONFIG_UDP_BLOCKS; i++) { sub_packet_t *sub_packet = &udp_packet_temp.sub_packet[i]; // 检查azimuth是否为0 if (sub_packet->azimuth != 0xffff) { // 将子包存入当前缓冲区 memcpy(&lidar->buffer[lidar->current][lidar->valid_count[lidar->current]], sub_packet, sizeof(sub_packet_t)); // 统计有效数据 lidar->valid_count[lidar->current]++; } // 检查azimuth是否为0 if (sub_packet->azimuth == 0) { // 切换到下一个缓冲区并通知处理线程 lidar->current = (lidar->current + 1) % 2; // 切换缓冲区 lidar->valid_count[lidar->current] = 0; memcpy(&lidar->buffer[lidar->current][lidar->valid_count[lidar->current]], sub_packet, sizeof(sub_packet_t)); lidar->valid_count[lidar->current]++; pthread_cond_signal(&lidar->cond); // 通知处理线程 } } pthread_mutex_unlock(&lidar->mutex); } close(sockfd); return NULL; } // 组包线程 void *packet_processor(void *arg) { RBLidar *lidar = (RBLidar *)arg; // 处理数据 while (1) { pthread_mutex_lock(&lidar->mutex); pthread_cond_wait(&lidar->cond, &lidar->mutex); // 等待数据 // 处理当前缓冲区数据 int next_index = (lidar->current + 1) % 2; // 获取上一缓冲区索引 int count = lidar->valid_count[next_index]; // 获取有效数据的数量 // 创建临时缓冲区以存储点数据 point_data_t temp_buffer[BUFFER_SIZE * CONFIG_BLOCK_COUNT]; // 假设 BUFFER_SIZE 足够大 int temp_count = 0; // 处理当前缓冲区中的每个有效子包 for (int i = 0; i < count - 1; i++) { sub_packet_t *sub_packet = &lidar->buffer[next_index][i]; // 填充点数据 for (int j = 0; j < CONFIG_BLOCK_COUNT; j++) { point_data_t point_data; point_data.azimuth = sub_packet->azimuth + j * 25; point_data.dist = sub_packet->point[j].dist_0; point_data.rssi = sub_packet->point[j].rssi_0; point_data.timestamp = 1L; // 使用当前时间戳, 也可以根据需要使用其他时间戳 // 将填充的点数据添加到临时缓冲区 temp_buffer[temp_count++] = point_data; } } // 调用回调函数 lidar->callback((void*)temp_buffer, sizeof(point_data_t) * temp_count); // // 重置当前缓冲区 // memset(lidar->buffer[next_index], 0, sizeof(sub_packet_t) * BUFFER_SIZE); // lidar->valid_count[next_index] = 0; // 重置有效数据计数 pthread_mutex_unlock(&lidar->mutex); } return NULL; } // 创建RBLidar实例 RBLidar *rblidar_create(const char *ip, int port, callback_t callback) { RBLidar *lidar = (RBLidar *)malloc(sizeof(RBLidar)); lidar->ip = strdup(ip); lidar->port = port; lidar->callback = callback; lidar->current = 0; pthread_mutex_init(&lidar->mutex, NULL); pthread_cond_init(&lidar->cond, NULL); // 创建接收线程 pthread_t listener_thread; pthread_create(&listener_thread, NULL, udp_listener, lidar); pthread_detach(listener_thread); // 让线程在结束时自动回收资源 // 创建组包线程 pthread_t processor_thread; pthread_create(&processor_thread, NULL, packet_processor, lidar); pthread_detach(processor_thread); return lidar; } // 释放RBLidar实例 void rblidar_destroy(RBLidar *lidar) { for (int i = 0; i < 2; i++) { free(lidar->buffer[i]); } pthread_mutex_destroy(&lidar->mutex); pthread_cond_destroy(&lidar->cond); free(lidar->ip); free(lidar); }